DEA Models for Identifying Critical Performance Measures

نویسندگان

  • Yao Chen
  • Joe Zhu
چکیده

In performance evaluation, it is important to identify both the efficient frontier and the critical measures. Data envelopment analysis (DEA) has been proven an effective tool for estimating the efficient frontiers, and the optimized DEA weights may be used to identify the critical measures. However, due to multiple DEA optimal weights, a unique set of critical measures may not be obtained for each decision making unit (DMU). Based upon a set of modified DEA models, this paper develops an approach to identify the critical measures for each DMU. Using a set of four Fortune’s standard performance measures, capital market value, profit, revenue and number of employees, we perform a performance comparison between the Fortune’s e-corporations and 1000 traditional companies. Profit is identified as the critical measure to the performance of e-corporations while revenue the critical measure to the Fortune’s 1000 companies. This finding confirms that high revenue does not necessarily mean profit for e-corporations while revenue means a stable proportion of profit for the Fortune’s 1000 companies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a New Model for Bank’s Supply Chain Performance Evaluating with DEA Solution Approach

Data Envelopment Analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs) with multiple inputs and outputs. The traditional DEA treats decision making units under evaluation as black boxes and calculates their efficiencies with first inputs and last outputs. This carries the notion of missing some intermediate measures in the process of changing the inputs to...

متن کامل

Two DEA Models Employment in IS Project Selection for Iran Ministry of Commerce

Selection of an appropriate set of Information System (IS) projects is a critical business activity which is very helpful to all organizations. In this paper, after describing real IS project selection problem of Iran Ministry of Commerce (MOC), we introduce two Data Envelopment Analysis (DEA) models. Then, we show applicability of introduced models for identifying most efficient IS project fro...

متن کامل

DEA Models with Interval Scale Inputs and Outputs

This paper proposes an alternative approach for efficiency analysis when a set of DMUs uses interval scale variables in the productive process. To test the influence of these variables, we present a general approach of deriving DEA models to deal with the variables. We investigate a number of performance measures with unrestricted-in-sign interval and/or interval scale variables.

متن کامل

Efficiency Analysis Based on Separating Hyperplanes for Improving Discrimination among DMUs

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative technical efficiency for each member of a set of peer decision making units (DMUs) with multiple inputs and multiple outputs. The original DEA models use positive input and output variables that are measured on a ratio scale, but these models do not apply to the variables in which interval scale data can appe...

متن کامل

Classifying inputs and outputs in interval data envelopment analysis

Data envelopment analysis (DEA) is an approach to measure the relative efficiency of decision-making units with multiple inputs and multiple outputs using mathematical programming. In the traditional DEA, it is assumed that we know the input or output role of each performance measure. But in some situations, the type of performance measure is unknown. These performance measures are called flexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals OR

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2003